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Abstract. A medium described by an imaginary potential (or imaginary (refractive index)2),
that varies sinusoidally in one direction, acts as a volume grating for plane waves incident on
it obliquely or normally. Two peculiar features are identified. First, if the potential is weak, so
that there are only two significant diffracted beams near the Bragg angle, and three for normal
incidence, diffraction is strongly affected by degeneracies of the non-Hermitian matrix generating
the ‘Bloch waves’ in the grating; the effect of these degeneracies is very different from that of
the Hermitian degeneracies for transparent gratings. Second, if the potential is strong and the
grating thick, the asymptotic distribution of intensities among the diffracted beams (momentum
distribution) is a rather narrow Gaussian, and dominated by a single set of complex rays; this is
very different from the semiclassical limit for transparent gratings, where the rays form families
of caustics proliferating with thickness, and with a wider momentum distribution.

1. Introduction

Our purpose here is to draw attention to several curious features of wave propagation in
periodic structures (‘gratings’) where the potential is purely imaginary, in contrast to the
more familiar potentials that are real (no dissipation) or have a small imaginary part (weak
dissipation). In the simplest nontrivial problem of this sort, the purely dissipative potential
varies sinusoidally in only one direction(x), and the waveψ propagates paraxially in two
dimensions(x, z). Such phenomena are governed by

∇2ψ (x, z)+ (k2+ iQcos2 (Kx)
)
ψ (x, z) = 0 (1)

whereK � k andQ is real (the usual case of a transparent medium would haveQ = iQ2,
whereQ2 is real).

We envisage (1) applying in a slab (volume grating) extending fromz = 0 to
z = Z. Because the operator in (1) is periodic, a plane wave incident fromz < 0 will,
notwithstanding the dissipation, emerge into the spacez > Z as a series of Bragg-diffracted
beams. The amplitudesAn of the beams obey the Raman–Nath equations (Raman and Nath
1936b) (section 2) that have been much studied in the transparent case of light diffracted by
a grating of ultrasound (for a review, see Berry (1966)). But for imaginary gratings the non-
Hermitian nature of the operator in (1) makes the behaviour of the intensitiesPn = |An|2
unusual in several respects.

First, they obey an unfamiliar sum rule (section 2). Second, the matrix governing the
‘Bloch waves’ inside the grating can be made degenerate by varying parameters (section
3). Now, degeneracies of non-Hermitian matrices are very different from degeneracies of
Hermitian matrices, and the mathematical differences are reflected in the behaviour of the
Pn (for other physical phenomena depending on degeneracies of non-Hermitian matrices,
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see section 3 of Berry (1994)); these are particularly striking whenQ is small, so the
number of diffracted beams is small. Third, the opposite extreme, whenQ is large (section
4) and the number of beams is large, is the imaginary counterpart of the semiclassical or
geometrical-optics regime. However, thePn are not dominated, as in the transparent case,
by caustics (Lucas and Biquard 1932, Nomoto 1951) (singularities of families of rays) that
proliferate and get more complicated asz increases, but by one simple set of rays that is
surprisingly easy to calculate.

One situation where (1) occurs is in atom optics (Oberthaleret al 1996). A beam of
atoms with three effective internal states, massm and energyE = h̄2k2/2m propagates
through a standing-wave field with wavenumberK, produced, for example, by two counter-
propagating laser beams. The three levels are a ground state and an excited state—these
are the working levels—and a level to which the excited state decays. According to
Chudesnikov and Yakovlev (1991), the quantum waveψ for the centre of mass of the
atoms remaining in the ground state is determined by the potential

V (x) = d2E2
0

h̄
(
1+ 1

2i γ
) cos2 (Kx) (2)

where1 is the detuning of the laser beam from the transition frequency of the working
levels,d the dipole matrix element for this transition,γ the decay rate from the excited to
the third state, andE0 is the electric field strength of the laser. The Hamiltonian involving
this potential is non-Hermitian becauseψ ignores those atoms decaying into the third level.
It follows that the potential is purely imaginary if the detuning is zero, withQ in (1) given
by

Q = 4md2E2
0

γ h̄3 . (3)

Another way to implement (1) is with the propagation of electromagnetic waves of
frequencyω in a periodic medium with uniform (real) dielectric constantε and (real)
conductivity6 varying sinusoidally withx, that is

6 (x) = 60 cos2 (Kx) . (4)

Then it follows from Maxwell’s equations that waves linearly polarized alongy satisfy (1),
with ψ representing the electric field component and

k2 = ω2εµ0 Q = µ0ω6. (5)

The requirements thatε and6 are real will be satisfied if these quantities represent the dc
response of the material, withω much smaller than all natural frequencies (e.g. in diffraction
of microwaves by a stack of different metal plates).

2. Raman–Nath equations and intensity sum rule for diffracted beams

Let the wave incident fromz < 0 be travelling at an angleθ = K0/k � 1 to thez axis,
that is

ψinc = exp{i (k0z+K0x)} (6)

wherek2 = k2
0 +K2

0. In the medium, the corresponding solution of (1) can be written

ψ = exp{i (k0z+K0x)}
∞∑

n=−∞
An (z) exp(2inKx). (7)
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Emerging from the grating into the spacez > Z are the diffracted beams.An(Z) is the
amplitude of thenth beam, which travels in the directionθ + nθB, whereθB = 2K/k is the
Bragg angle.

Assuming paraxiality, that isK � k, the variation of theAn with z will be much
slower than exp(ikz). Then substitution of (7) into (1) gives, with the initial condition (6),
the Raman–Nath equations for an imaginary grating:

∂ζAn (ζ ) = [−2in (n+ α)− σ ] An (ζ )− 1
2σ
[
An+1 (ζ )+ An−1 (ζ )

]
An (0) = δn,0 (8)

where

ζ ≡ K2z

k0
α ≡ K0

K
= 2θ

θB
σ ≡ Q

4K2
. (9)

Because of the dissipation, we expect that the total intensity in all the beams (total
energy) will not be conserved but should decay exponentially with increasing depthζ .
Surprisingly, this does not happen. The analogue of6Pn = 1 for the transparent case is
easily found from (8) to be

∞∑
n=−∞

(−1)nPn (ζ ) =
∞∑

n=−∞
(−1)n |An (ζ )|2 = exp(−2σζ ) (10)

so that the exponentially decaying quantity is not the total energy but involves an alternating
sum of the intensities. This sum rule provides a powerful check on numerical solutions of
(8) (which are unstable), and has other consequences, as we will see.

3. Physics of non-Hermitian degeneracies: two and three beams

In this section we considerσ to be small. Then the coupling of then = 0 (forward) beam
with the others is small, except for incidence corresponding to the first Bragg reflection,
namelyα = −1 (that isθ = −θB/2), in which case then = 1 beam can be large too. To
explore this two-beam case, we write

α = −1+ β (11)

so thatβ measures deviation from the Bragg angle, and include onlyA0 andA1 in the
Raman–Nath equations (8). Thus

i∂ζ

(
A0

A1

)
= M

(
A0

A1

)
where M =

( −iσ − 1
2iσ

− 1
2iσ 2β − iσ

)
. (12)

In the transparent case, whereσ = iσ2, the matrixM is Hermitian. For an imaginary
potential, it is not. Its eigenvalues are

λ± = β − iσ ±
√
β2− 1

4σ
2 (13)

and the eigenfunctions are

|χ±〉 =
( −iσ

2
(
β ±

√
β2− 1

4σ
2
))

. (14)
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The diffracted amplitudes are obtained from the superposition of the eigenfunctions
satisfying the initial condition in (8). This is(

A0

A1

)
= B+ |χ+〉 exp(−iλ+ζ )+ B− |χ−〉 exp(−iλ−ζ )

where B± = i

√
β2− 1

4σ
2∓β

2σ

√
β2− 1

4σ
2

 . (15)

We emphasize the degeneracy atβ = ±σ/2. This is a branch point for the eigenvalues
and eigenfunctions: around a circuit in complexσ space, the+ and− states exchange
identities. As the degeneracy is approached, the two eigenvectors (14) become parallel,
and the coefficientsB± diverge (of course the amplitudes themselves remain finite). This
contrasts with the behaviour at degeneracies of Hermitian matrices: in the transparent case,
whereσ = iσ2, the eigenvalues inβ, σ2 space form a double cone (diabolo) (Teller 1937)
centred on the degeneracy atβ = σ2 = 0, around which the states+ and− preserve their
identities (each being confined to its own conical sheet) and remain orthogonal.

In the intensities corresponding to (15), the three variablesζ , β andσ can be replaced
by two, that we define as

η ≡ 1
2ζ |σ | =

z |Q|
8k0

δ ≡ 2β

|σ | =
4
(
θ + 1

2θB
)

|σ | θB
. (16)

The degeneracy corresponds toδ = 1. Then

P1 ≡ |A1|2 = exp(−4η)
sin2

(
η
√
δ2−1

)
δ2−1

P0 ≡ |A0|2 = exp(−4η)+ P1

}
. (17)

These formulas satisfy the alternating sum rule (10); they are valid for allη and δ if σ is
small enough.

Figure 1. IntensityP1 (equation (17)) of the first Bragg-reflected beam for an imaginary grating,
as a function of the thickness and angular deviation variablesη andδ defined by (16).

Figure 1 showsP1 as a function of thicknessη and deviationδ from the Bragg angle.
The most notable feature is that the degeneracyδ = 1 marks the transition from oscillatory
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(trigonometric) to non-oscillatory (hyperbolic) behaviour of both the thickness dependence
(variation with η for fixed δ) and the ‘rocking curves’ (variation withδ for fixed η), as
demonstrated by the dark fringes of the pattern, at

δn = ±
√

1+
(
nπ

η

)2

(n = 1, 2, . . .) (18)

whose asymptote asη → ∞ is δn = 1. Near the Bragg angle and for thick gratings, the
decay of the rocking curve is Gaussian, namely

P1 ≈ 1
4 exp(−2η) exp

(−δ2η
)

(η � 1, δ � 1) (19)

with the angular width of the Bragg peak shrinking with thickness as1δ ∼ 1/
√
η. From

(17), the same decay applies to the total intensityP0 + P1 of the transmitted atoms.
Alternatively stated, the total transmitted intensity increases anomalously at the Bragg angle,
a ’remarkable phenomenon’ predicted and observed by Oberthaleret al (1996) and related
to the effect discovered long ago by Borrmann (1941) for X-rays diffracted by an absorbing
crystal.

By contrast, the intensities for a transparent grating, withσ = iσ2 and the variables still
defined by (16), are

P1 =
sin2

(
η
√
δ2+1

)
δ2+1

P0 = 1− P1

}
. (20)

Now the fringes in theη, δ plane cross the Bragg axisδ = 0, andη = nπ , and the total
transmitted intensity is unity irrespective of the directionδ.

It is, however, possible to get degeneracies between Bloch waves for transparent
gratings. In the many-beam transmission electron microscopy of thin crystals, where the
crystal potential is not a single sinusoid but has many Fourier components, degeneracies
can be produced at Bragg angles by varying the voltage of the microscope, and the ‘critical
voltage effect’ (Buxton and Berry 1974, 1976, Berryet al 1973) can be detected by the
divergence of the spacing of ‘bend contours’ (fringes of thickness and orientation).

Degeneracy can also occur for normal incidence (α = 0) with σ small. Then all
amplitudes are negligible exceptA0 andA+1 = A−1. The Raman–Nath equations for this
three-beam case are

i∂ζ

(
A0

A1

)
= N

(
A0

A1

)
where N =

( −iσ −iσ
− 1

2iσ 2− iσ

)
. (21)

N has eigenvalues

λ± = 1− iσ ±
√

1− 1
2σ

2. (22)

This time the degeneracy is atσ = √2. Solving (21) gives the intensities as

P±1 ≡ |A±1|2 = exp(−2σζ ) σ 2

4

(
1− 1

2σ
2

) sin2
(
ζ

√
1− 1

2σ
2
)

P0 ≡ |A0|2 = exp(−2σζ )+ 2P1

 (23)

which satisfy the alternating sum rule (10). At the degeneracy,

P±1 = 1
2ζ

2 exp
(−23/2ζ

)
P0 =

(
1+ ζ 2

)
exp

(−23/2ζ
)

(24)

and as before this marks the transition from oscillatory to hyperbolic behaviour. Figure
2 shows thatσ = √2 is within the range of the three-beam approximation, at least in
the region where the intensities are appreciable. For largerζ , the exact solutions of the
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Figure 2. Dashed curves: intensitiesP0 (upper curve) andP1 (lower curve) at normal incidence,
in the three-beam approximation (24) for the grating strengthσ = √2, for which the governing
matrix (21) is degenerate; full curves: scaled intensities from the full Raman–Nath equations
(8) for α = 0.

Raman–Nath equations (8) diverge from the approximations (24), because of contributions
from the beams with|n| > 2 (even when these are small, they can vary rapidly as a result
of the factor 2in2 in (8) with α = 0, and so can spoil the three-beam approximation through
their derivatives).

4. Nonclassical semiclassical behaviour: many beams

Now we consider largeσ , that is gratings acting strongly on the waves passing though
them. We restrict ourselves to normal incidence, that isα = 0. The aim is to determine the
asymptotic distribution of the intensitiesPn as the grating thicknessZ increases.

If the grating were transparent, that isσ = iσ2, this would be the geometrical optics
regime, and the solutions of the Raman–Nath equations could be obtained (Berry 1966) in
terms of the rays bent by the sinusoidal refractive index in (1): thePn would be given
approximately by the transverse momentum distribution of the rays leaving the grating at
z = Z in the direction of thenth Bragg-diffracted beam. The non-negligible intensities
would be those with|n| < √σ2 (corresponding to the maximum slope of the rays), and the
pattern of intensities would be dominated bycausticsin the momentum distribution. Asz
increases, the caustics would get more numerous, and the corresponding asymptotics of the
diffracted beams would get more complicated.

With the imaginary grating, the intensities behave very differently. It is still possible to
think formally in terms of rays, but now these are complex, and for largez the only rays
that survive are those traversing the grating near the minima of cos2(Kx) in (1). These rays
wind like particles in a harmonic potential well, and they are unaffected by the periodicity
of the grating. It is possible to incorporate this insight into a geometrical optics theory for
the complex rays, but it is complicated to implement. A more direct procedure that yields
exactly the same results is to solve the Raman–Nath equations directly, regarding the index
n as a continuous variable.

It is convenient first to rewrite (8) in the different variablesBn, defined by

An (ζ ) ≡ (−1)n Bn (ζ ) . (25)

Thus (for normal incidence)
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∂ζBn (ζ ) =
[−2in2− σ ]Bn (ζ )+ 1

2σ
[
Bn+1 (ζ )+ Bn−1 (ζ )

]
Bn (0) = δn,0. (26)

Now we make the central approximation

Bn+1 (ζ )+ Bn−1 (ζ )− 2Bn (ζ ) ≈ ∂2

∂n2
Bn (ζ ) . (27)

Therefore we must solve

∂ζBn (ζ ) = −2in2Bn (ζ )+ 1
2σ∂

2
nBn (ζ ) . (28)

It can be confirmed by direct substitution that a solution condensing onto then = 0 beam
asζ → 0 is

Bn (ζ ) ≈ D√
sinh

(
2ζ
√

iσ
) exp

{
−n2

√
i

σ
coth

(
2ζ
√

iσ
)}
. (29)

But this solution is valid for largeζ , and cannot hold forζ → 0. To see that it is indeed
the correct solution of (28), and determine the constantD, we match to the small-ζ solution
of (26) obtained by the analogue of the phase-grating procedure employed by Raman and
Nath (1936a, 1936b) to solve their equations approximately, namely neglecting the term in
n2. Then the solution of (26) is

Bn (ζ ) ≈ exp(−σζ ) In (σζ ) (30)

whereIn is the modified Bessel function. This approximation satisfies the alternating sum
rule (10) exactly. To match this to (29), we employ the Debye asymptotic approximations
(Abramowitz and Stegun 1972) givingIn for σζ andn large, and further approximate these
for σζ � n. Thus

exp(−σζ ) In (σζ ) ≈
exp

(
− n2

2σζ

)
√

2πσζ
. (31)

This matches precisely to (29) for smallζ , and enablesD to be identified as

D = 1√
π

(
i

σ

)1/4

. (32)

The final result is that the diffracted intensities are given by the Gaussian distribution

Pn = |An|2 ≈ a (ζ, σ ) exp

{
− n2

w (ζ, σ )

}
(33)

where the amplitudea and widthw of the set of diffracted beams are

a (ζ, σ ) =
√

2

π

√
σ
[
cosh

(
2ζ
√

2σ
)
−cos

(
2ζ
√

2σ
)]

w (ζ, σ ) = ( σ2 )1/4

√
cosh

(
2ζ
√

2σ
)
−cos

(
2ζ
√

2σ
)

sinh
(

2ζ
√

2σ
)
+sin

(
2ζ
√

2σ
)

 . (34)

This result should be valid for largeσ .
If in addition ζ

√
σ � 1, the amplitude decays exponentially and the width saturates:

a (ζ, σ )→ 2
π
√
σ

exp
(
−ζ√2σ

)
w (ζ, σ )→ (

σ
2

)1/4

} (
ζ
√
σ � 1

)
. (35)
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Figure 3. Dots: exact solutions of the Raman–Nath equations (8); full curves: calculations
based on the semiclassical approximation (33) and (34). (a): Intensities forσ = 10, ζ = 4. (b):
Width w for σ = 10, fitted from exact solutions and calculated from (34). (c): As (b), but for
the amplitude loga. (d): Width w for largeζ , fitted from exact solutions and calculated from
(35). (e): As (d), but for (decay constant)2 = 2σ in amplitudea in (35). (f): As (e), but for
(normalization)−2 = σπ2/2.

Comparison of the width with the corresponding result for transparent gratings(nmax≈√
σ2) shows that an imaginary grating of comparable strength transmits far fewer diffracted

beams with appreciable intensity; in other words, the transmitted waves have a much
narrower momentum distribution.

The arguments leading to (33) and (34) are not rigorous, and so it is desirable to test
them against numerical solutions of the Raman–Nath equations (8). Figure 3 shows the
comparisons. It is clear that the asymptotic intensities (33), with amplitude and width
given by (34), gives an accurate description of diffraction by gratings with strong imaginary
potentials, especially in the regime of largeζ that is so complicated for transparent gratings.
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